
Journal of Thermal Analysis, Vol. 18 (1980) 455--461 

C A L C U L A T I O N  OF T H E R M A L  EFFECTS IN DTA 

V. m.  VERTOGRADSKY 

All-Union Institute o f  Aircraft JI[aterials, Moscow, USSR 

(Received May 22, 1979) 

By considering that the temperature of the end of the thermal effect and the return 
of the thermal curve to the baseline do not coincide new calculation methods for the 
thermal effect become possible. Both the integral value of the thermal effect and its 
distribution over temperature may be calculated by processing only that part of the 
DTA curve which corresponds to the temperature interval of the transformation. 

It is demonstrated on the examples of non-variant transformation and transformation 
with an even distribution of the thermal effect over the temperature interval of the 
transformation that, under certain assumptions, the values of the thermal effect cal- 
culated by the suggested method and by the area of the peak are identical. 

In the overwhelming majority of studies involving the application of differential 
thermal analysis, no sharp difference is made between two values: the temperature 
at which the transformation ends, and the temperature at which the thermal curve 
returns to the baseline. As a result, not only is the accuracy of reading the tempera- 
ture interval of the transformation reduced, but the means of calculating the 
thermal effects will be limited, and calculations concerning the distribution of the 
thermal effect within the temperature interval of the transformation will be incor- 
rect or deficient. 

Let us use the following symbols: 
Ti, Tf = initial and final temperature, respectively, of the deviation of the ther- 

mal curve from the baseline; 
TI, TF = initial and final temperature, respectively of the transformation (for 

non-variant transformations, TI = Tp = Tnon); 
~t, "OF = moment of the start and the end, respectively, of the transformations; 
A I  = difference in the heat contents of the substance in question at the tempera- 

tures T~ and T~, relative to unit volume; 
TF 

Q = AI  - ,~ CsdT = thermal effect of the transformation, where C~ is the heat 
T r 

capacity of the substance in question, relative to unit volume (for transformations, 
of the type of second-order phase transitions and 2-type heat capacity functions, 
the term Cs may be understood as the "background" value of the heat capacity, 
and Q as the excess part of the enthalpy above the "background");  

q = dQ/dT = intensity of the thermal effect. 
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It is obvious that 

For a non-variant transformation 

TF 

Q = f qdT (1) 
T I 

Q = A I =  Qnon (2) 

The traditional way to calculate the thermal effect is to introduce some time 
function whose integral is proportional to the value of the thermal effect. This 
approach is justified if one assumes that the function in question describes the 
temperature difference of the sample under study as compared to the temperature 
that the sample would have if no thermal effect of the transformation existed. 
It is important to note that this difference, arising at the moment when the trans- 
formation starts (to which the point Ti corresponds in the thermal curve) will not 
disappear immediately after the end of the transformation. Therefore, a portion 
termed the after-effect portion will exist in the thermal curve. It begins at TF and 
ends in an asymptotical transition into the baseline (to which the observed point 
Tt corresponds). Consequently, in the traditional calculation of the thermal effect 
one operates with an area bordered by the thermal curve in the section Ti - Tf, 
which will not coincide with the integral of the transformation TI - TF. The pro- 
portionality factor between the area of the peak and the thermal effect will be 
discussed in a later part of this paper. 

The analytical description of the thermal processes in DTA will be carried out 
similarly to [1 -4]  and others, assuming that the temperature and other param- 
eters of the sample under study and of the reference sample are constant over 
their volume at each moment of time. The experimental approach to this model is 
an instrument in which the heat exchange between the block and the samples 
takes place over sufficiently large heat resistances, so that temperature transfers 
in the interior of the samples are small in comparison to the transfers over the 
above-mentioned resistances. Reduction in the size of the samples, lower heating 
rates, and also agitation of liquid or powdered materials will promote the approach 
to the model of the calculation. 

A calculation using a linear approach of the heat exchange between the sample 
being tested at the temperature Ts(z) and the block at the temperature Tb('C), of 
the heat exchange between the sample and a number of heat outlets with the tem- 
peratures Toj (j = 1, 2 , . . . ,  k; z = time), and also of the heat exchange between 
the samples, leads to the following equation for the capacity absorbed in unit 
volume of the sample studied: 

j=k 
n = A ( T b  - Ts) - ~ Bj(Ts - Toj) - D ( T s  - Tr) (3) 

j = : t  

where A, Bj and D are coefficients independent of temperature. 
An analogous equation for the reference sample with the temperature Tr(z) can 

be established, including on the left-hand side the heat capacity of the reference 
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sample C~: 
j=k 

Cr d T r  = A4 ( T b -  T r ) -  Z Bj(Tr -- ZoJ) + D(Ts - Tr) 
dr i=1 

(4) 

Assuming that the temperature change rate of the reference sample is constant, 
j=k 

dTr _ fl, and introducing the terms 3 = T~ - Tr and B = ~ Bj, we obtain from 
dr j=i 

Eqs (3) and (4) 

n =  Crfl - f ( A  + B + 2D) = Crfl(1-~0-O} (5) 

The parameter O is introduced into Eq. (5): 

O = C~(A + B +  2D) (6) 

A similar parameter figures in [2 -4]  as a time constant. Its value can be obtained 
from a calibration experiment using a sample with a known heat capacity value, 
differing from that of the reference sample. For such an experiment, the left-hand 
side of Eq. (5) is equal to Crfl, and hence 

o = ~ / ~ ( i  - c J c )  (7) 

Since the point in question is heat capacity relative to unit volume, the calibra- 
tion sample may be made of the material of the reference sample, differing from 
the latter in its mass, due to internal cavities. In this case, the ratio of the masses 
should figure in Eq. (7), instead of the ratio of the heat capacities. The changes of 
O observed in the temperature interval of the study allow one to take into account 
the temperature course of the coefficients A, B and D, and consider them as con- 
stants (as in the above deduction) only within limited temperature intervals. 

The integral of Eq. (5) from z I to ZF is equal to AI, and hence 

~F zF 
Q = f Crfl(1 -- 6/flO)dz - f C~dT (8) 

TI r I 

The time boundaries of the transformation interval indispensable for calcula- 
tions with Eq. (8) are obtained in the most simple manner by means of the DTA 
curve for a non-variant transformation. This curve, in the coordinates 3 and r, 
has a linear section, whose beginning and end will correspond to r I and zF. Ana- 
lytically, it is expressed by the equation 

6(~) = 6i - f i z  (9) 

Using Eq. (7), ~I can  be expressed as 

(lO) 
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The relationship (8) may be put into a concrete form for non-variant transforma- 
tions. Let us introduce the symbols 

T F _  I = T F - -  T D 6 F - I  = 6 g - -  I~ 1 

It should be noted that for the non-variant transformation (with heat absorption 
a t / / >  0) 

6F-I = -- fi~F-~ (11) 
is true. 

Finally, we obtain from Eq. (8) 

Q~o~- C~ [ fl~2-~ + Off-gh) (12) 0 
and 

Q n o n  - Cr { O  ~E-IZE-I2 O'~E-~--6ITV-I} (13) 

Equation (13) may be interpreted by elements of the area bordered by the ther- 
mal curve and the baseline (Fig. 1). The first term within the brackets is equal to 
the area S1 bordered by the baseline, the part of the DTA curve in the portion 
between T I and zv, and the ordinate at the point ZF- The third term is equal to the 
area S 3 between the baseline and the zero line in the portion from vi to rF. To inter- 
pret the second term, one must demonstrate its correspondence to the area $2, 
bordered by the baseline, the ordinate at point -c F and the after-effect portion of 
the curve. 

By combining equations of type (4) for the sample under study and the reference 
sample at periods 0 _< rl -< o% where zl = z - %, one obtains 

C~ 1 - a/Off (14) 
C r 1 + d6/fidZl 

Integration of Eq. (14) for the boundary conditions 6(0) = 3v, ~ ~ 6x yields, at 

"171 ----~ oO 

- 6i = 6v-I exp ( -  ZlCr/C~O) (15) 

Relationship (15) describes the after-effect portion of the thermal curves. The 
area enclosed by this portion and the baseline is equal to the integral of Eq. (15) 
within the limits "Cl = 0 to z 1 ~ m, yielding 

6F_tOC~/Cr 

If Cs = C~, the second term in the brackets in Eq. (13) will be equal to $2, under 
the condition that S 3 = 0. Finally, the rule of proportionality between the thermal 
effect and the area of the peak will be confirmed. The proportionality factor is 
equal to Cr/O. 
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For a transformation taking place within a temperature interval, the determina- 
tion of the integration boundaries for Eq. (8) is not quite so obvious as for the 
non-variant transformation. Namely, while TI coincides with Ti, TF will not in the 

-f 
L 
y 

Fig. 1. Thermal curve of non-variant transformation obtained on heating of the samples 

g_ 
. . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 2. Typical thermal curve (a) and the corresponding distribution of the thermal effect (b) 

general case coincide with the peak height, and the situation shown in Fig. 2 will 
occur. The distribution of  the thermal effect will be given by the function q~: 

= ( G  + q ) / G  

The connection of q5 with the thermal curve is determined from a relationship 
similar to Eq. (14), which, within the temperature interval of  the transformation, 
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includes, in place of Cs, the complex C~ + q: 

1 - 6 / O f f  
9 = (16) 

1 + d 6 / f l d z  

Equation (16) should be considered the basic equation of the DTA curve, and 
Eq. (14) as its special case for the after-portion of the curve. The moment zF (and 
consequently the temperature TF also) can be identified as that point in the thermal 
curve after which this curve is described by the exponential relationship Eq. (t3). 
For this purpose it is expedient to straighten the corresponding portion of the 
curve by plotting it in semi-logarithmic coordinates [1 ]. 

Another approach to determine TF utilizes Eq. (16). By calculating from the 
thermal curve (Fig. 2a) the parameter ~0 corresponding to Eq. (16), one can obtain 
its dependence on temperature (Fig. 2b), on which T~ appears as the point of 
transition of the curve q~(T) into the "baseline". 

A curve of the type of Fig. 2b additionally contains sufficient information for 
calculation of Q and the distribution of the intensity of the thermal effect in the 
temperature interval of the transformation. The reverse process is also feasible: 
from a given function ~o(T), the corresponding thermal curve can be calculated [5]. 

We will now demonstrate the application of these methods to calculate Q for 
the case of the simplest distribution of the thermal effect: at 9 = const., and 

Cs = G.  
For the temperature difference vs. time relationship (in the period of the trans- 

formation) we have, from Eq. (16): 

6 = t O ( 1  - q))[1 - exp (-z/q~O)] (17) 

for the after-effect portion, an expression of the type of Eq. (13) will be true: 

a = fiF exp (-- rl/O ) 

The values fiF, TI and TF are related by the equation 

TF = TI + fiZF-I + 6F 

(18) 

(19) 

The first method to calculate Q consists in the use of the experimental thermal 
curve within the interval "r I to "/TF, and the calculation formula Eq. (8). By substitut- 
ing Eq. (17) into Eq. (18), and taking into account Eq. (19), we obtain 

Q = C , ( T  F - Ti)(~o - 1) (20) 

The second method consists in calculating the function ~o(T) from the same 
portion of the experimental curve (and together with this, the function q ( T )  too, 
and subsequently utilizing Eq. (1). For the case in question, the result will be 
identical with Eq. (20). 

The third possibility consists in calculating the area of the peak and multiplying 
it by Cr/O.  This area is equal to the sum of the following integrals: Eq. (17) from 
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~' = 0 to "OF_I, and Eq. (18) from zero to z~ -~ ~ .  One may ascertain that the 
result is again identical with Eq. (20). 

However, the dependence of the intensity of the thermal effect on temperature 
and time can only be determined by the first two methods. 

Depending on the task to be solved and on the experimental conditions, one 
or the other method of calculation, or their combination may prove expedient. 
An example of such a combination important in practice is the case when neigh- 
bouring peaks partially overlap. Usually, the temperature intervals of the trans- 
formations do not in fact overlap, but the after-effect portion of the first peak will 
overlap with the following peak. In such cases, the thermal effect of the first 
transformation may be determined by calculation using the first or second method, 
and the total thermal effect by measuring the total area of the peaks. 
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R~suM~ -- En consid6rant le fait que la temp6rature de la fin de l'effet thermique et le retour b, 
la ligne de base de la courbe ATD ne coincident pas, on a d6velopp6 de nouvelles m6thodes du 
calcul de l'effet thermique. La valeur int6grale de l'effet thermique ainsi que sa distribution 
dans l'intervalle de temp6ratures peuvent ~tre calcul6es en ne consid6rant que la pattie de la 
courbe ATD qui correspond A l'intervalle de temp6rature de la transformation. 

A l'aide d'exemples de transformations invariantes et de transformations 5. distribution 
uniforme de l'effet thermique dans l'intervalle de temp6ratures de la transformation, on a 
montr6 qu'avec certaines hypotheses, les valeurs de l'effet thermique calcul6es par la m6thode 
propos~e et ~ partir des surfaces des pics, sont identiques. 

ZUSAM~ENFASSUNG - -  Bei Beriicksichtigung, dab die Temperatur des Endes des thermischen 
Effekts und die Rtickkehr der thermischen Kurve zur Grundlinie nicht zusammenfallen, wer- 
den neue Methoden zur Berechnung des thermischen erschlossen. Sowohl der Integralwert 
des thermischen Effekts, als auch seine Verteilung in dem Temperaturbereich kSnnen dutch 
Behandlung ausschlieBlich desjenigen Teils der DTA-Kurve berechnet werden, welcher dem 
Temperaturbereich der Umwandlung entspricht. 

Anhand von Beispielen der nicht-varianten Transformation und der Transformation mit 
gleichmfiBiger Verteilung des thermischen Effekts im Temperaturbereich der Umwandlung 
wurde gezeigt, dab -- unter gewissen Voraussetzungen -- die Werte des durch die vorge- 
schlagene Methode und des aus der Peakfl~iche berechneten thermischen Effekts identisch sind. 

Pe3roMe - -  HoBsle BO3MOZ<HOCTa pac~eTa Ten:IoBblx ~qbqberToB oTrpl, maroTca np~ y~eTe He- 
coBna~eRna TeMnepaTyp ro r~a  Ten~oaoro aqb~beKTa a BOaBpaTa TepMrtqeCKO~ ~prmo~ K 6a30Bo~ 
amarm. Ka~ nnTerpaa~noe 3na~eHrte "ren~o~oro aqbdpeuTa, war i~ ero pacnpe~ezenrm no TeMnepa- 
Type MoryT 6~T~, pacc~mTan~ rrp~ 06pa60Tre TOm, tO TO~ qaCT~ ~TA-rpaao~, xoTopaa CO- 
OTBeTCTByeT ~eMnepaTypnoMy ~nTep~asty npe~pa~eHrm. 

Ha np~4Mepax ~ortBaprianTnoro npespamenna a rtpeBpa~eHns c paB/30Mepr~tM pacnpe~eae- 
larleM Tel~/oBoro aqbqberTa s TeMnepaTypnoM nnxep~aae npe~pamermn noxa3ano, ~ITO I]]gkI I-IeKO- 
Top~,~X ~Iony~eurlax, 3naqenrm TenY~o~oro aqbqbeKTa pacc~mTann~e no npe)lJ~araeMo~ MeTO~are 
n no nJloma~l,t Imra coBnajlaroy. 
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